Pandas Big Data¶
This will generate tons of data using fake2db,
Create fake data:¶
fake2db --rows 1000000 --db sqlite --custom date random_int currency_code
2021-10-23 10:08:07,922 bl Rows argument : 1000000
2021-10-23 10:08:07,947 bl Database created and opened succesfully: sqlite_ORAUCPVE.db
2021-10-23 10:08:07,947 bl fake2db found valid custom key provided: date
2021-10-23 10:08:07,947 bl fake2db found valid custom key provided: random_int
2021-10-23 10:08:07,947 bl fake2db found valid custom key provided: currency_code
2021-10-23 10:08:25,024 bl custom Commits are successful after write job!
Load data:¶
Be sure to set sqlitedb name.
#!/usr/bin/env python3
import sqlite3
import pandas as pd
import numpy as np
import time
from rich_dataframe import prettify
conn = sqlite3.connect('sqlite_ORAUCPVE.db')
cur = conn.cursor()
sql_query = pd.read_sql_query ('''
SELECT
*
FROM custom
''', conn)
#df = prettify(pd.DataFrame(sql_query, columns = ['date', 'random_int','currency_code' ]),
# row_limit=50, first_rows=True)
df = pd.DataFrame(sql_query, columns = ['date', 'random_int','currency_code' ])
print(df)
Run it:¶
# bl @ bl-dt in ~/proj/fakeDataPY [10:13:22]
$ ./new.py
date random_int currency_code
0 2001-08-30 5880 LAK
1 1993-10-13 8486 ARS
2 2014-06-04 7055 RUB
3 1998-08-19 1997 ERN
4 2008-11-15 7752 GTQ
... ... ... ...
999995 1993-10-24 4791 TVD
999996 1976-06-14 6420 KMF
999997 1992-10-14 5631 BMD
999998 2013-02-10 3235 MUR
999999 2000-06-20 1544 CUC
[1000000 rows x 3 columns]
Next, load in datatime to make the date column usable: